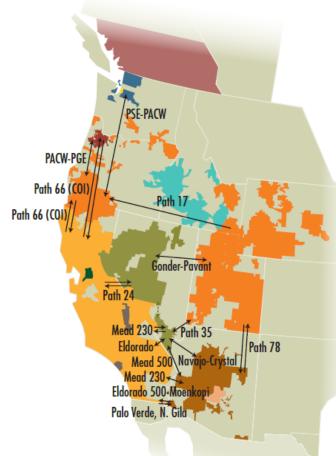



# Transmission Planning at the California ISO & Overview of Generation-related Transmission

Governor's Committee on Energy Choice Technical Working Group on Generation, Transmission and Delivery

Phil Pettingill, Director, Regional Integration


January 12, 2018



### **Key Topics**

- 1. Transmission under ISO operational control
- 2. Planning process and approvals
- 3. Generation Interconnection Process
- 4. ISO studies to support State Resource Adequacy
- 5. Revenue recovery through the Transmission Access Charge (TAC)

ISO is well integrated in the west, with significant transfer to and from Nevada



| Path                   | Estimated Max<br>Capacity (MW)* |  |  |
|------------------------|---------------------------------|--|--|
| Path 24 (west to east) | 100                             |  |  |
| Path 24 (east to west) | 35-90                           |  |  |
| Eldorado               | 797                             |  |  |
| Path 35 (west to east) | 580                             |  |  |
| Path 35 (east to west) | 538                             |  |  |
| Gonder-Pavant          | 130                             |  |  |
| PACW to PGE            | 320                             |  |  |
| Path 66 (ISO to PGE)   | 627                             |  |  |
| Path 66 (PGE to ISO)   | 296                             |  |  |
| Path 66 (ISO to PACW)  | 331                             |  |  |
| Path 66 (PACW to ISO)  | 432                             |  |  |
| Path 17                | 400                             |  |  |
| PSE to PACW            | 300                             |  |  |
| Eldorado 500-Moenkopi  | 732                             |  |  |
| Palo Verde, N. Gila    | 3,151                           |  |  |
| Path 78 (PACE to APS)  | 625                             |  |  |
| Path 78 (APS to PACE)  | 660                             |  |  |
| Navajo-Crystal         | 522                             |  |  |
| Mead 500               | 349                             |  |  |
| Mead 230 (APS <-> ISO) | 236                             |  |  |
| Mead 230 (ISO to NVE)  | 3,443                           |  |  |
| Mead 230 (NVE to ISO)  | 3,476                           |  |  |

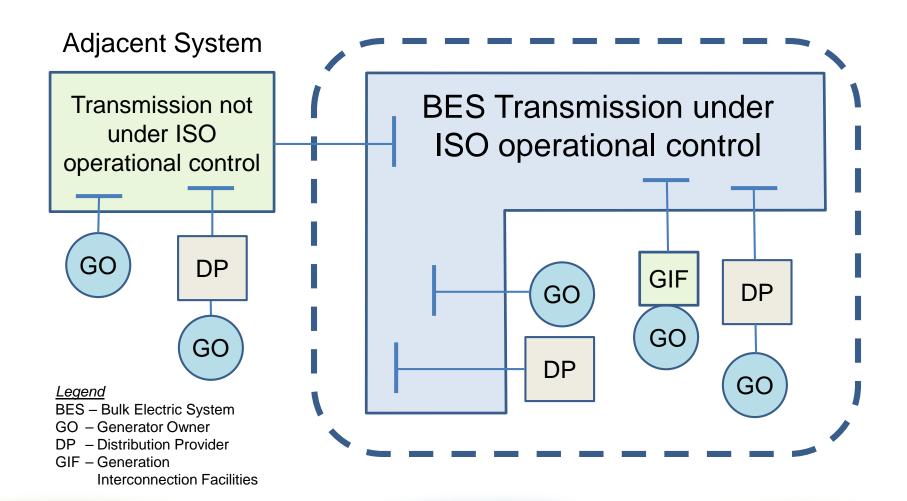


<sup>\*</sup>Current as of December 2017



Page 3

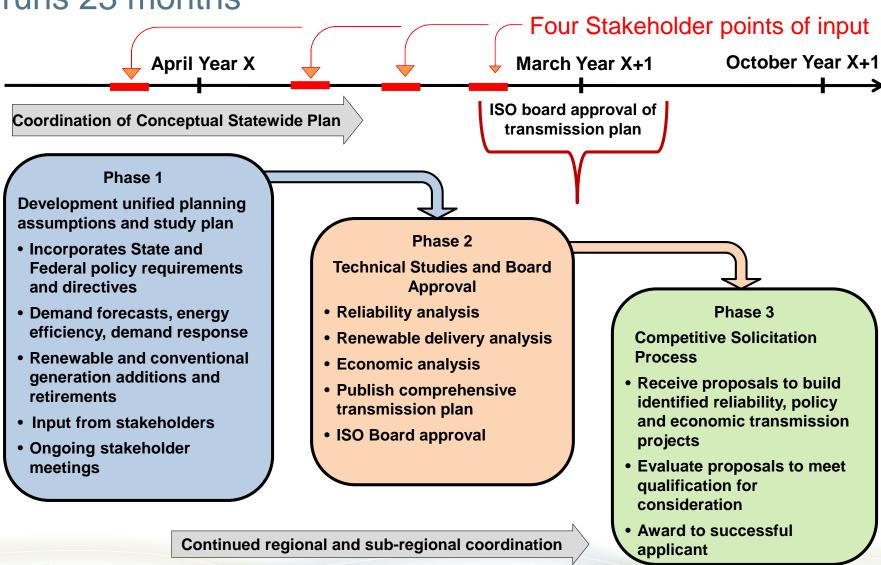
# Transmission facilities under ISO operational control


### Transmission under ISO operational control

#### FERC has defined what is generally NOT considered transmission

- Radial lines connecting generation facilities
- Distribution facilities defined by FERC functional test
  - Normally in close proximity to retail customers
  - Primarily radial in character
  - Power flows into and rarely, if ever, flows out
  - Power enters and is not reconsigned or transported to some other market
  - Power is consumed in a comparatively restricted geographical area
  - Meters at the transmission/distribution interface measure flows into the local distribution system
  - Will be of reduced voltage



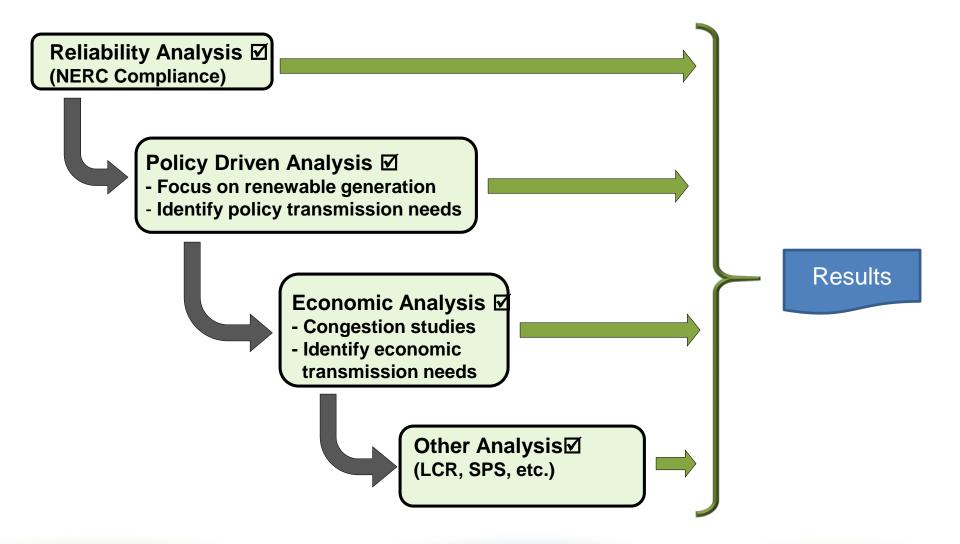

## Planning area boundaries are defined by transmission under ISO Operational Control





# ISO transmission planning process and approvals

### Transmission planning process begins each year and runs 23 months




CAISO Public

Page 8

California ISO

### Development of Annual Transmission Plan





# Transmission planning is coordinated with state processes:

CEC & 1

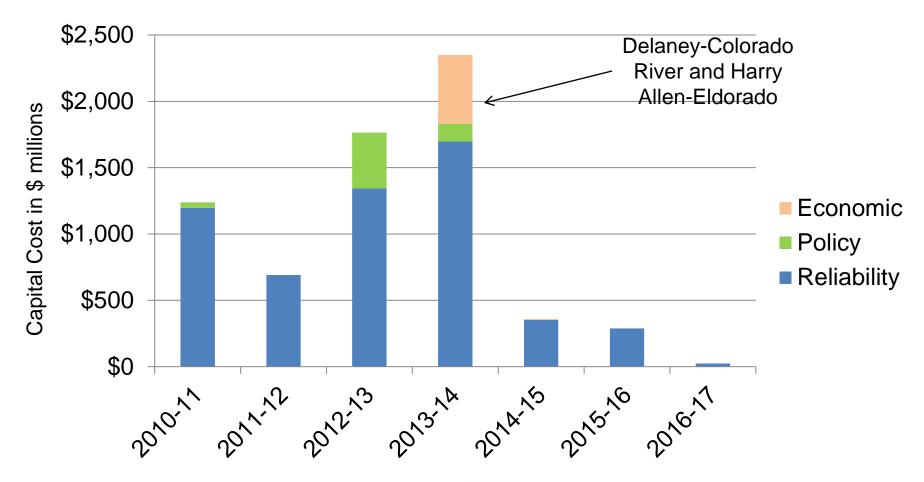
Create demand forecast & assess resource needs

CAISO 2 Creates transmission plan

CPUC 3 Creates procurement plan

Final plan
authorizes

Results feed into next biennial cycle


procurement

### ISO Management and Board Approval Process

- ISO Management approves projects with a capital cost of \$50 million or less
- The Revised Draft Transmission Plan is presented to the ISO Governing Board for approval resulting in the Board Approved Plan
  - Transmission upgrades and additions with estimated capital costs \$50M or more will then be deemed approved
  - Approval of other findings, including selection of nontransmission alternatives
- ISO posts the Board Approved Comprehensive Transmission Plan
- ISO makes the Plan available to neighboring transmission providers, interconnected BAAs and regional planning groups



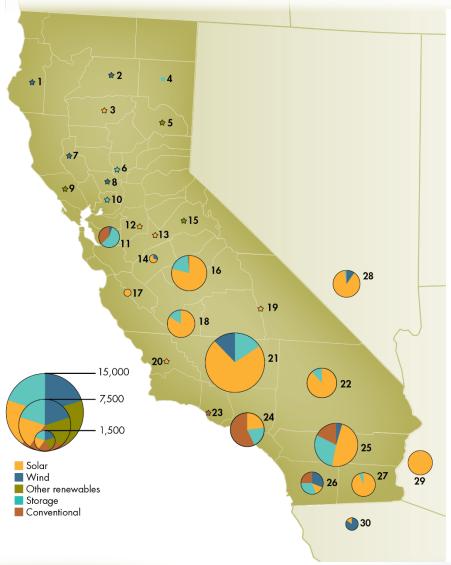
## Transmission approvals over the last 6 years – over 30 projects a year until 2014-2015:



Transmission Plan



# Examples of Special studies conducted inside the transmission planning process to focus on new and emerging challenges:


- Further study of system capacities at 50% renewables
- Generator frequency response modeling to improve quality of frequency response studies
- Gas-electric coordination studies
- Potential for economically driven retirement of gas-fired generation
- Required characteristics for further reliance on demand response products
- Benefits of Large Storage in managing resource balancing and integrating renewable generation



### Generation Interconnection Process



### ISO generation interconnection queue



| Interconnection queue by county  County # of Projects |                                | Megawatts     |            |         |              |       |
|-------------------------------------------------------|--------------------------------|---------------|------------|---------|--------------|-------|
|                                                       |                                | # of Projects | Renewables | Storage | Conventional | Total |
| 1                                                     | Humboldt                       | 2             | 106        | 28      |              | 134   |
| 2                                                     | Shasta                         | 1             | 200        |         |              | 200   |
| 3                                                     | Tehama                         | 3             | 259        |         |              | 259   |
| 4                                                     | Lassen                         | 2             | 21         | 27      |              | 48    |
| 5                                                     | Plumas                         | 1             | 35         |         |              | 35    |
| 6                                                     | Sutter                         | 1             |            | 64      |              | 64    |
| 7                                                     | Lake                           | 2             | 145        | 13      |              | 158   |
| В                                                     | Yolo                           | 2             | 170        |         |              | 170   |
| 9                                                     | Sonoma                         | 1             | 35         |         |              | 35    |
| 10                                                    | Solano                         | 1             |            | 314     |              | 314   |
| 11                                                    | Alameda, Contra Costa, Santa ( | Clara 11      | 139        | 1,087   | 723          | 1,949 |
| 12                                                    | San Joaquin                    | 6             | 171        | 55      | 24           | 250   |
| 13                                                    | Stanislaus                     | 3             | 451        |         |              | 451   |
| 14                                                    | Merced                         | 6             | 591        | 28      |              | 619   |
| 15                                                    | Toulumne                       | 2             | 11         | 10      |              | 21    |
| 16                                                    | Fresno, Madera                 | 45            | 3,887      | 972     | 60           | 4,91  |
| 17                                                    | San Benito, Monterey           | 2             | 520        |         |              | 520   |
| 18                                                    | Kings                          | 21            | 2,388      | 468     |              | 2,85  |
| 19                                                    | Tulare, Inyo                   | 6             | 305        | 23      |              | 328   |
| 20                                                    | San Luis Obispo                | 1             | 40         |         |              | 40    |
| 21                                                    | Kern                           | 60            | 8,696      | 1,187   |              | 9,88  |
| 22                                                    | San Bernardino                 | 21            | 2,924      | 369     |              | 3,29  |
| 23                                                    | Ventura                        | 2             |            | 26      | 300          | 326   |
| 24                                                    | Los Angeles, Orange            | 10            | 1,082      | 912     | 2,644        | 4,63  |
| 25                                                    | Riverside                      | 24            | 3,571      | 1,989   | 1,170        | 6,730 |
| 26                                                    | San Diego                      | 20            | 811        | 560     | 457          | 1,82  |
| 27                                                    | Imperial                       | 7             | 1,880      | 125     |              | 2,00. |
| ln-                                                   | state Totals                   | 263           | 28,438     | 8,257   | 5,378        | 42,07 |
| 28                                                    | Nevada                         | 14            | 3,078      | 64      |              | 3,14  |
| 29                                                    | Arizona                        | 14            | 3,493      | 20      |              | 3,51  |
| 30                                                    | Mexico                         | 4             | 1,321      |         |              | 1,32  |
| Οι                                                    | ut-of-state Totals             | 32            | 7,892      | 84      |              | 7,970 |
| TC                                                    | OTAL ALL PROJECTS              | 295           | 36,330     | 8,341   | 5,378        | 50,04 |

as of January 9, 2017



### The CAISO's generator interconnection process has evolved to address our needs:

- The CAISO relies on a "cluster study" approach to deal with potentially huge volumes of interconnection requests in a competitive market
- The generator interconnection process is coordinated with our annual transmission planning process and the framework for policy-driven transmission
- A "fast track" for very small projects and an "independent study track" for projects needing faster service are available, on an "energy only" basis.

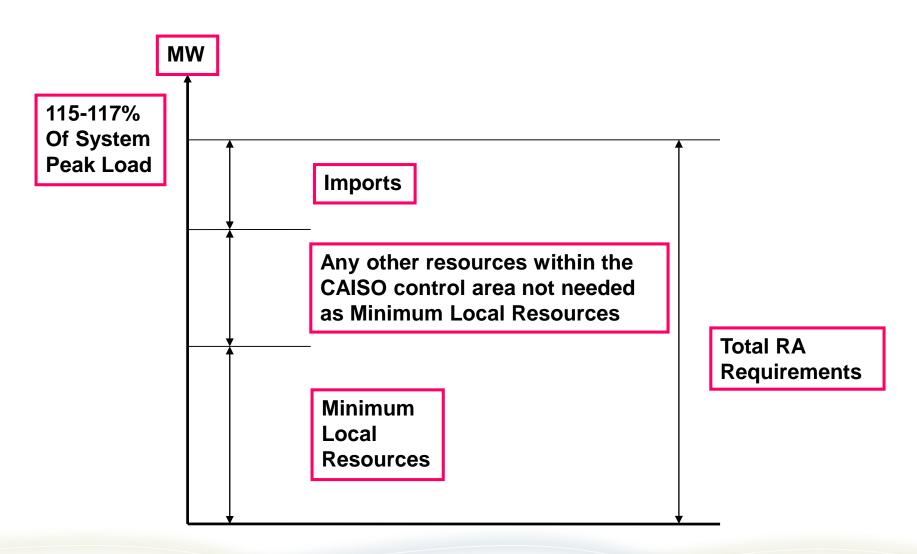
#### Overview of Generator Interconnection Process

- Phase 1 study assesses reliability and deliverability
  - reasonable MW amounts when queue is very large
  - projects may rely on available system capacity; or
  - project posts security deposit to enter phase 2 and pay its share of delivery upgrade costs
- Phase 2 study identifies delivery upgrades only for customers willing to pay for the upgrades
  - A second financial security posting is necessary to move forward into contracts and implementation

# ISO studies to support State Resource Adequacy

### General Resource Adequacy Concepts

- Resource Adequacy (RA)
  - Ensure that capacity exists and is under contract in order for all load to be served by responsible Load Serving Entities (LSEs)
  - Generally, LSEs will demonstrate that they have secured adequate qualified capacity to serve their peak load including planning reserve (every month in the month ahead timeframe).
  - Generally, LSEs will demonstrate, in the year ahead timeframe that they have secured minimum 90% of the next summer's peak load needs including planning reserve.
  - All resources participating in the ISO markets under an RA contract will have an RA must-offer-obligation to the ISO.




## Transmission Planning analysis plays two roles in the California's annual Resource Adequacy program:

- State's resource adequacy program ensures:
  - adequate supply on a system wide basis and in local areas where transmission is constrained
- For "system" capacity:
  - ISO determines if "qualifying capacity" (determined by CPUC) should be discounted due to system limitations
  - establish qualifying import limits
- For local resource adequacy:
  - determine the needs in local load pockets, and validate that the procurement actually meets those needs



### Total Resource Adequacy Procurement





# Recovering transmission revenue requirements

Transmission Access Charge (TAC) is the ISO's mechanism for transmission-owning utilities to recover their costs of transmission assets.

- A transmission-owning utility that transfers operational control to the ISO becomes a "participating transmission owner" (PTO)
- The PTO continues to own, maintain and operate transmission assets turned over to ISO operational control
- Each PTO submits its transmission revenue requirements (TRR) to FERC for approval to recover through the TAC



## FERC orders and precedents emphasize several basic principles for allocation of TRR.

- Costs must be allocated in a way that is roughly commensurate with benefits
- 2. Calculation of benefits is not an exact science
- 3. The process for determining benefits and beneficiaries must be transparent
- Broad agreement among affected parties that the cost allocation is fair

# Existing TAC structure for the current ISO region was approved by FERC as part of Order 1000 compliance.

#### Existing TAC structure consists of:

- Postage stamp "regional" rate to recover TRR for all facilities rated > 200 kV under ISO operational control
  - \$/MWh charge to all internal load and exports
- PTO-specific "local" rates to recover TRR for all facilities rated < 200 kV under ISO operational control</li>
  - \$/MWh charge to internal load in each PTO's territory
- Currently, no differentiation of cost allocation based on project type (e.g., reliability, economic, or policy projects), in-service date or other non-voltage level factors



# CAISO Draft Regional TAC Framework Proposal

# Objectives for any alternative to the current TAC structure when new PTOs join

- TAC should not represent a barrier to joining the ISO
  - avoid "rate shock" for either new or existing PTOs
  - apply equally well for all new PTOs
- Align cost allocation with benefits as far as possible
- Align structure with the ISO's transmission planning process & criteria as far as possible
- Maximize the likelihood of state commission, FERC, existing PTO, and other stakeholder acceptance



# Proposed a draft framework for the cost allocation of existing high voltage facilities

- Costs will be recovered via "license plate" sub-regional TAC rates for their respective loads
- Each sub-region's existing facilities will comprise "legacy" facilities for which subsequent new sub-regions have no cost responsibility

## New facilities will have costs allocated to align with benefits (purpose)

- For a <u>reliability project</u> that is designed only to meet a reliability need within a sub-region, allocate the full project cost to that sub-region
- For a <u>policy-driven project</u> with multi-area benefits, allocate costs to loads of relevant state or local regulatory authorities
  - If connected entirely within the same sub-region where the policy driver originated, allocate full cost to that sub-region
- For a purely <u>economic project</u>, allocate cost shares to subregions in proportion to their economic benefits



### Thank You





Page 30